图1:自动驾驶不同级别可以实现的功能及时间预测
(来源:Arm)
自动驾驶车辆成本居高不下。实现L4和L5级别自动驾驶的车辆要比普通车辆额外花费7.5-10万美元,只有出行服务(Mobility-as-a-Service, MaaS)运营商才能支付得起,还远远高于普通消费者的支付水平。各种类型的传感器是导致高昂成本的主要因素。
消费者心理接受程度:对自动驾驶车辆安全的担心是消费者不愿接受自动驾驶的主要原因。有调查统计显示,超过60%的受访者不但不愿意乘坐自动驾驶车辆,也不愿意在路上跟自动驾驶车辆共享道路。要建立对车辆功能安全性的信任还需要时间,另外消费者也担心联网的车辆会遭受黑客攻击和破坏。
复杂繁多的传感器和信息输入源:激光雷达(LiDAR)、车载雷达、摄像头、图像处理、计算机视觉等大量数据的输入和融合需要分类处理、做出实时决策和采用相应行动。
软件和算法的复杂性:一个能够实现完全自动驾驶的车辆大约需要10亿行代码的软件,这是任何一家公司都无法独自完成的。跟飞机做个对比,波音787 Dreamliner的软件才包含1400万行代码,因为飞机的飞行环境和路径相对简单,而且飞行员都是经过专业训练的驾驶员。而自动驾驶车辆的运行环境要复杂得多,不但要在拥挤的道路上与其它车辆交互,而且要随时主要行人,还要应对各种各样的天气和路况。
异构集成的高性能处理器支持:传感器融合(Sensor Fusion)和图像处理对CPU、GPU和专用AI加速器提出了极高的要求。此外,处理器和整个系统的功耗和尺寸也要大幅度减少。
功能性安全:目前业界还没有统一的功能性安全标准,各种安全性技术虽然已经经过验证,但仍无法满足自动驾驶对功能性安全的要求。
作者:顾正书
已完成
数据加载中